
RapidSMS Rwanda Documentation
Release 0.9.6

RapidSMS Rwanda

Jul 06, 2017

Contents

1 Rwanda Custom Release 3

i

ii

RapidSMS Rwanda Documentation, Release 0.9.6

RapidSMS is a free and open-source framework for dynamic data collection, logistics coordination and communica-
tion, leveraging basic short message service (SMS) mobile phone technology. It is written in Python and uses Django.

The documentation, and other resources for the RapidSMS framework can be found below.

• Website: http://www.rapidsms.org/

• Documentation: http://rapidsms.readthedocs.org/

• Code: http://github.com/rapidsms/rapidsms

• Google Group: http://groups.google.com/group/rapidsms

• Youtube Channel: http://www.youtube.com/user/rapidsmsdev

• RapidSMS IRC Channel archives: http://irc.rapidsms.org (#RapidSMS also accessible via browser at http:
//webchat.freenode.net/)

Contents 1

http://www.rapidsms.org/
http://rapidsms.readthedocs.org/
http://github.com/rapidsms/rapidsms
http://groups.google.com/group/rapidsms
http://www.youtube.com/user/rapidsmsdev
http://irc.rapidsms.org
http://webchat.freenode.net/
http://webchat.freenode.net/

RapidSMS Rwanda Documentation, Release 0.9.6

2 Contents

CHAPTER 1

Rwanda Custom Release

RapidSMS Rwanda was built to track mHealth-related data from Community Health Workers (CHWs), originally in
the Musanze district, and eventually counry-wide.

It’s initial features include:

• Registration of pregnant mothers

• Reminders sent out for pre-natal and ante-natal check-ups

• Tracking of birth, death, and other vital statistics of the fetus and newborn

Features currently in development are:

• Enhanced charting and mapping

• Enhanced alerts and feedback

• Additions for the “1000 days” project, tracking infant weight and height through 2 years of age

Installing and running RapidSMS Rwanda

Basic Environment Setup

If you’re already familiar with working on python/Django projects, you’ll likely be able to skip this section. The
following steps walk you through the first steps of setting up python, i.e. basic package management and development
environments. This allows you to more easily install the dependencies for RapidSMS-Rwanda, while keeping your
base installation of python clean. This assumes that you already have python installed.

Install easy_install (if necessary):

$ wget peak.telecommunity.com/dist/ez_setup.py
$ python ez_setup.py

Install pip (if necessary):

3

RapidSMS Rwanda Documentation, Release 0.9.6

$ easy_install pip

Set up virtualenv, a tool for creating isolated python environments (to keep your dependencies seperate and in local
user space, rather than in /usr/):

$ pip install virtualenv
$ pip install virtualenvwrapper

Configure virtualenv. First, create a folder to organize all your virtual environments within:

$ mkdir ~/virtualenvs

Append to ~/.bashrc:

export WORKON_HOME=$HOME/.virtualenvs
source /usr/local/bin/virtualenvwrapper.sh

Make the virtual environment:

$ mkvirtualenv rwanda

Installing RapidSMS-rwanda

First, clone the project directly:

$ git clone git://github.com/pivotaccess2007/RapidSMS-Rwanda

You can then install the dependencies:

$ pip install -r pip-requires.txt

Configuring RapidSMS-Rwanda

The following parameters need to be set in order to get RapidSMS-Rwanda up-and-running from a base install.

First, edit rapidsms.ini and add the basic configuration parameters. Yours may vary, depending on what sort of database
you have, what you want to name it, your time zone, etc.:

[database]
engine=django.db.backends.postgresql_psycopg2
name=rwanda
user=postgres

...
Revence thinks this is necessary.
TIME_ZONE=Africa/Kampala
BASE_TEMPLATE=layout.html # This needed to be added

To apps, add patterns (this seemed to be missing upon syncdb):

apps=webapp,ajax,admin,reporters,locations,messaging,httptester,logger,ubuzima,echo,
→˓ambulances,patterns

Create the database:

4 Chapter 1. Rwanda Custom Release

RapidSMS Rwanda Documentation, Release 0.9.6

$ sudo -u postgres createdb rwanda

Syncdb:

$ python manage.py syncdb

Load in essential fixtures:

$ python manage.py loaddata fosa_location_types groups reminder_types reporting

View-Level Documentation

The next few sections provide a tab-by-tab (in Django-speak, view by view) breakdown of the functionality of
RapidSMS Rwanda. Each page will explain the high-level functional specifications of the page, followed by a more
detailed technical explanation: example code of critical logic, models involved, etc.

The main tabs are:

• Reporters and Groups

• Child & Maternity Health

• Ambulances

• Messaging

• Message Log

Contents

Reporters and Groups

Index

The main reporters view is at webserver/reporters, which accesses the view at apps.reporters.views.index

This view retrieves all reporters for which the user has permission, based on the UserLocation associated with this
user account.

Further, it uses an optimization, LocationShorthand, to provide easy recursive lookups within a Location tree mirroring
Rwanda’s administrative boundaries.

See Models for a more detailed discussion of UserLocation and LocationShorthand, also see
apps.reporters.views.location_fresher and apps.reporters.views.reporter_fresher for implementations using these
lookups.

Export to CSV

One additional feature of the reporters app is that it has mirror views for export to CSV, containing all the same filtering
logic, but replacing a standard render_to_response call with logic for emitting a csv file.

See apps.reporters.views.*_csv for examples.

1.2. View-Level Documentation 5

RapidSMS Rwanda Documentation, Release 0.9.6

match_inactive

One important thing to note to avoid confusion is that match_inactive is actually a function used by all the following
views (error log, inactive and active reporters), it simply filters users by location, using LocationShorthand to ease the
process.

Active Reporters

The active reporters view is at reporters/active, which accesses the view at apps.reporters.views.view_active_reporters.

Its critical section is in apps.reporters.views.active_reporters:

def active_reporters(req,rez):
active_reps=[]
reps=Reporter.objects.filter(groups__title='CHW',**rez)
pst=reporter_fresher(req)
for rep in reps.filter(**pst):

if not rep.is_expired():
active_reps.append(rep)

return active_reps

The important method here is is_expired in the Reporter model, which iterates over the last_seen attributes of all
related PersistantConnections, checking to see if this reporter has last been seen within the desired date range.

Finally, this view chains to location_fresher, only returning those reporters that the user has authorization to view.

Inactive Reporters

The inactive reporters view is at reporters/inactive, which accesses the view at
apps.reporters.views.view_inactive_reporters.

Its critical section is in apps.reporters.views.active_reporters:

def inactive_reporters(req,rez):
active_reps=[]
reps=Reporter.objects.filter(groups__title='CHW',**rez)
pst=reporter_fresher(req)
for rep in reps.filter(**pst):

if rep.is_expired():
active_reps.append(rep)

return active_reps

The important method here is is_expired in the Reporter model, which iterates over the last_seen attributes of all
related PersistantConnections, checking to see if this reporter has last been seen within the desired date range.

Note that this method is a mirror of active_reporters with only a not missing in the if rep.is_expired() branch.

Finally, this view chains to location_fresher, only returning those reporters that the user has authorization to view.

Error Log

The inactive reporters view is at reporters/errors, which accesses the view at apps.reporters.views.error_list.

This view looks for appropriate location, filtered by UserLocation, and then looks for apps.ubuzima.models.ErrorNote
objects associated with each reporter location and within the appropriate time ranges:

6 Chapter 1. Rwanda Custom Release

RapidSMS Rwanda Documentation, Release 0.9.6

if 'location__id' in l.keys(): rez['errby__location__id']=l['location__id']
elif 'location__in' in l.keys(): rez['errby__location__in']=l['location__in']
elif 'location__id' in pst.keys(): ps['errby__location__id']=pst['location__id']
elif 'location__in' in pst.keys(): ps['errby__location__in']=pst['location__in']
try:

rez['created__gte'] = filters['period']['start']
rez['created__lte'] = filters['period']['end']+timedelta(1)

except KeyError:
pass

errs=ErrorNote.objects.filter(**rez).order_by('-created')

Reporters and Groups

I’m getting the following error when I try to access this view. Help?:

Traceback (most recent call last):

File "/home/david/Projects/PythonEnv/rwanda/lib/python2.6/site-packages/django/core/
→˓servers/basehttp.py", line 280, in run

self.result = application(self.environ, self.start_response)

File "/home/david/Projects/PythonEnv/rwanda/lib/python2.6/site-packages/django/core/
→˓servers/basehttp.py", line 674, in __call__

return self.application(environ, start_response)

File "/home/david/Projects/PythonEnv/rwanda/lib/python2.6/site-packages/django/core/
→˓handlers/wsgi.py", line 241, in __call__

response = self.get_response(request)

File "/home/david/Projects/PythonEnv/rwanda/lib/python2.6/site-packages/django/core/
→˓handlers/base.py", line 141, in get_response

return self.handle_uncaught_exception(request, resolver, sys.exc_info())

File "/home/david/Projects/PythonEnv/rwanda/lib/python2.6/site-packages/django/core/
→˓handlers/base.py", line 180, in handle_uncaught_exception

return callback(request, **param_dict)

File "/home/david/Projects/PythonEnv/rwanda/lib/python2.6/site-packages/django/
→˓views/defaults.py", line 24, in server_error

return http.HttpResponseServerError(t.render(Context({})))

File "/home/david/Projects/PythonEnv/rwanda/lib/python2.6/site-packages/django/
→˓template/__init__.py", line 173, in render

return self._render(context)

File "/home/david/Projects/PythonEnv/rwanda/lib/python2.6/site-packages/django/
→˓template/__init__.py", line 167, in _render

return self.nodelist.render(context)

File "/home/david/Projects/PythonEnv/rwanda/lib/python2.6/site-packages/django/
→˓template/__init__.py", line 796, in render

bits.append(self.render_node(node, context))

File "/home/david/Projects/PythonEnv/rwanda/lib/python2.6/site-packages/django/
→˓template/__init__.py", line 809, in render_node

return node.render(context)

1.2. View-Level Documentation 7

RapidSMS Rwanda Documentation, Release 0.9.6

File "/home/david/Projects/PythonEnv/rwanda/lib/python2.6/site-packages/django/
→˓template/loader_tags.py", line 103, in render

compiled_parent = self.get_parent(context)

File "/home/david/Projects/PythonEnv/rwanda/lib/python2.6/site-packages/django/
→˓template/loader_tags.py", line 97, in get_parent

raise TemplateSyntaxError(error_msg)

TemplateSyntaxError: Invalid template name in 'extends' tag: ''. Got this from the
→˓'base_template' variable.

Reminders

Lorem Ibsum

Triggers

Lorem Ibsum

Statistics

Lorem Ibsum

Ambulances

Lorem ibsum

Messaging

The messaging view is similar to standard messaging view in rapidsms.contrib, however only Reporter objects are
allowed to be messaged, and the logic has been adapted accordingly.

Message Log

Message Log is accessed via the url /logger/, and is the standard rapidsms.contrib.logger view.

See the RapidSMS documentation for further details (this is a joke, RapidSMS doesn’t actually have detailed docu-
mentation).

SMS Messaging Logic

The SMS messaging logic for the RapidSMS project is all housed within a monolithic app within apps.ubuzima.App. It
uses the keyworder parser and several handler methods to handle customized parsing for each message type, with vali-
dation and parsing logic interspersed throughout each message type’s method, as well as creation of any supplemental
models or reports based on the type of message.

Additionally, this is where ErrorNote objects are created when an erroneous message is encountered.

8 Chapter 1. Rwanda Custom Release

RapidSMS Rwanda Documentation, Release 0.9.6

One critical portion of the logic is the create_report method, invoked by the majority of the handler methods to create
the Report object associated with the message. See Models for a more detailed description of Report and Field objects.
The create_report method is as follows:

def create_report(self, report_type_name, patient, reporter):
"""Convenience for creating a new Report object from a reporter,
patient and type """

report_type = ReportType.objects.get(name=report_type_name)
report = Report(patient=patient, reporter=reporter, type=report_type,

location=reporter.location, village=reporter.village)
return report

The individual message types are described below.

Registration messages

Registration messages are of the form:

SUP YOUR_ID CLINIC_ID LANG VILLAGE
or
REG YOUR_ID CLINIC_ID LANG VILLAGE

Depending on if the user’s role is ‘Supervisor’ or ‘CHW’, respectively. This message updates or creates an associated
Reporter object, and no reports.

Pregnancy Messages

Pregnancy registrations are of the form:

PRE MOTHER_ID LAST_MENSES ACTION_CODE LOCATION_CODE MOTHER_WEIGHT

Only registered reporters are allowed to send this message, and a correct message sent from a registered reporter
creates a Report object of type ‘Pregnancy’, with any associated Field objects.

Models and Extensions

This page covers an overview of the pertinent models added by the Rwanda customization of RapidSMS, as well
as any extensions made via the ExtensibleModels classes within the RapidSMS Framework (Locations, Contacts,
Connections, etc).

Locations

LocationShorthand

RapidSMS Locations in version 1.2 suffer from a lack of efficient capabilities for recursive expansion in the Location
tree, having only a simple foreign key to self called parent.

In order to solve this problem, apps.ubuzima.models contains a model, LocationShorthand, which enables this ex-
pansion to be looked for any level of the tree, following a hard-coded structure that mirrors Rwanda’s administrative
boundaries that are pertinent to RapidSMS Rwanda, namely district and province.

1.4. Models and Extensions 9

RapidSMS Rwanda Documentation, Release 0.9.6

This allows for simple, fast lookups such as:

LocationShorthand.objects.filter(district__name='Musanze')

Which would return all child Locations of the Musanze district.

The pertinent model implementation is below:

class LocationShorthand(models.Model):
'Memoization of locations, so that they are more-efficient in look-up.'

original = models.ForeignKey(Location, related_name = 'locationslocation')
district = models.ForeignKey(Location, related_name = 'district')
province = models.ForeignKey(Location, related_name = 'province')

UserLocation

Ubuzima also provides a way of mapping web users to the locations they are authorized to administer, via the User-
Location model:

class UserLocation(models.Model):
"""This model is used to help the system to know where the user who is trying to

→˓access this information is from"""
user=models.ForeignKey(User)
location=models.ForeignKey(Location)

Reporters

See apps.reporters.models.

Rwanda uses a separate model for known reporters that are validated for submitting reports within the system. This
model doesn’t extend Contact, and is created as a result of the registration process.

Further, it uses PersistantConnection and PersistantBackend models, mirroring RapidSMS’ Backend and Connection
models, but tying in the idea that a single reporter, using a single phone number (SIM card), could end up communi-
cating over different backends, depending on the current state of the provider networks and active SMPP connections.:

class Reporter(models.Model):
"""This model represents a KNOWN person, that can be identified via

their alias and/or connection(s). Unlike the RapidSMS Person class,
it should not be used to represent unknown reporters
...

"""
alias = models.CharField(max_length=20, unique=True)
first_name = models.CharField(max_length=30, blank=True)
last_name = models.CharField(max_length=30, blank=True)
groups = models.ManyToManyField(ReporterGroup, related_name="reporters",

→˓blank=True)
...
location = models.ForeignKey(Location, related_name="reporters", null=True,

→˓blank=True)
role = models.ForeignKey(Role, related_name="reporters", null=True,

→˓blank=True)
...
village = models.CharField(max_length=255, null=True)

10 Chapter 1. Rwanda Custom Release

RapidSMS Rwanda Documentation, Release 0.9.6

Reports

apps.ubuzima.models contains a model for taking note of parsing errors when reporters submit reports:

class ErrorNote(models.Model):
'''This model is used to record errors made by people sending messages into the

→˓system, to facilitate things like studying which format structures are error-prone,
→˓and which reporters make the most errors, and other things like that.'''

errmsg = models.TextField()
errby = models.ForeignKey(Reporter, related_name = 'erring_reporter')
created = models.DateTimeField(auto_now_add = True)

This model is also used for the “Error Log” view in the reporters app.

Finally, all reports consist of the main Report object, and (potentially) any fields associated with it:

class Report(models.Model):
reporter = models.ForeignKey(Reporter)
location = models.ForeignKey(Location)
village = models.CharField(max_length=255, null=True)
fields = models.ManyToManyField(Field)
patient = models.ForeignKey(Patient)
type = models.ForeignKey(ReportType)
meaning of this depends on report type..
arr, should really do this as a field, perhaps as a munged int?
date_string = models.CharField(max_length=10, null=True)

our real date if we have one complete with a date and time
date = models.DateField(null=True)

created = models.DateTimeField(auto_now_add=True)

Because all fields are of numeric type, the Field model is fairly simple:

class Field(models.Model):
type = models.ForeignKey(FieldType)
value = models.DecimalField(max_digits=10, decimal_places=5, null=True)

Upgrading to the new RapidSMS Core

To upgrade to the new RapidSMS core, simply check out the new branch (until it is merged into main):

$ git checkout new-rapidsms

A number of database modifications need to occur:

alter table locations_locationtype add column "slug" varchar(50);
update locations_locationtype set slug=lower(name);
alter table locations_locationtype add unique(slug);

alter table "locations_location" add column "parent_type_id" integer;
update locations_location set parent_type_id = (select id from django_content_type
→˓where model = 'location');
alter table locations_location add check (parent_id >= 0);
alter table locations_location add constraint "locations_location_parent_type_id_fkey
→˓" foreign key (parent_type_id) references django_content_type(id) deferrable
→˓initially deferred;

1.5. Upgrading to the new RapidSMS Core 11

RapidSMS Rwanda Documentation, Release 0.9.6

alter table locations_location drop constraint parent_id_refs_id_47ca058b;

CREATE TABLE "locations_point" (
"id" serial NOT NULL PRIMARY KEY,
"latitude" numeric(13, 10) NOT NULL,
"longitude" numeric(13, 10) NOT NULL

);
alter table "locations_location" add column "point_id" integer REFERENCES "locations_
→˓point" ("id") DEFERRABLE INITIALLY DEFERRED;

alter table locations_location add column "type_slug" varchar(50) REFERENCES
→˓"locations_locationtype" ("slug") DEFERRABLE INITIALLY DEFERRED;

update locations_location set type_slug = (select slug from locations_locationtype t
→˓where t.id = type_id);

alter table locations_location drop column type_id;

alter table locations_locationtype drop constraint "locations_locationtype_pkey";

alter table locations_locationtype drop column id;

alter table locations_locationtype alter column slug set not null;

alter table locations_locationtype add constraint locations_locationtype_pkey primary
→˓key(slug);

alter table locations_location rename column type_slug to type_id;

Then, migrate points over to their own class, in shell_plus:

for l in Location.objects.extra(select={'longitude':'longitude','latitude':'latitude'}
→˓).all():

if l.longitude and l.latitude:
l.point = Point.objects.create(longitude=l.longitude, latitude=l.latitude)
l.save()

Finally, drop longitude and latitude from the locations table:

alter table locations_location drop column latitude;
alter table locations_location drop column longitude;

• genindex

• modindex

• search

12 Chapter 1. Rwanda Custom Release

	Rwanda Custom Release

